
Redpill getting colorless?

Are the conclusions drawn from observation
of Redpill results wrong?

• Background on SIDT

• Wrong assumptions, wrong conclusions?

• My conclusions

• What SIDTcon does ...

Created: 2007-04-01

Author: Oliver Schneider (assarbad.net)

Copyright c© 2006-2007 Oliver Schneider (assarbad.net)

Trademarks appear throughout this text without any trademark symbol; they are the property of their

respective trademark owner. There is no intention of infringement; the usage is to the bene�t of the

trademark owner.

http://assarbad.net/en/contact
http://assarbad.net

Preface

Almost everyone in the security community is aware of Joanna Rutkowska's tool Redpill. The
article1 is available on her website at http://invisiblethings.org/papers/redpill.html.

The method was quite impressive and I remember when I heard of it the �rst time. What
is important about this method is the fact that the SIDT instruction is not privileged and can
therefore be called from user mode2.
Now Joanna Rutkowska claimed in her article:

Because there is only one IDTR register, but there are at least two OS running concur-
rently (i.e. the host and the guest OS), VMM needs to relocate the guest's IDTR in a
safe place, so that it will not con�ict with a host's one. Unfortunately, VMM cannot
know if (and when) the process running in guest OS executes SIDT instruction, since
it is not privileged (and it doesn't generate exception). Thus the process gets the re-
located address of IDT table. It was observed that on VMWare, the relocated address
of IDT is at address 0xffXXXXXX , whereas on Virtual PC it is 0xe8XXXXXX . This was
tested on VMWare Workstation 4 and Virtual PC 2004, both running on Windows XP
host OS.

Throughout this short paper I am attempting to prove that this is a wrong conclusion. My
tests have been run with the currently3 latest version of VMWare Workstation.

Although Joanna Rutkowska got the most attention, others have previously used the descriptor
tables such as GDT and IDT to detect the presence of a virtual machine monitor (VMM) and
elaborated on the topic.

About the author

I am of German origin and currently live in Reykjavik (Iceland), where I work for FRISK Software
International, creators of F-Prot Antivirus, as researcher and developer.

In my spare time I enjoy programming, reverse engineering, reading books, learning foreign
languages and drinking a good brandy or cognac.

1... as well as the tool's source code
2CPL3 or ring 3 as it is called also in some documents.
3... as of 2007-04-01

1

http://invisiblethings.org/papers/redpill.html
http://www.frisk-software.com
http://www.frisk-software.com

Chapter 1. Background on SIDT

Chapter 1

Background on SIDT

Calling SIDT is an interesting thing. First of all you have to be aware of the fact that the interrupt
descriptor table, or IDT, exists for each processor 1. This also means you need some way to
determine the address to the IDT of all the processors in your system.

Not only that. Since a �normal� user mode process is not usually bound to one of the processors,
you have to have a way to force it to run on a certain processor and then retrieve the address to
the IDT. On Windows, our �specimen�, this can be done via the SetProcessAffinityMask() API
function.

For you to understand what we are going to execute, here is the code to read the address of
the IDT and return it to the caller. There we go:

ULONG_PTR GetIdtBaseAddress()

{

#pragma pack(1)

struct { USHORT Limit; ULONG_PTR BaseAddress; } idtr;

#pragma pack()

_asm sidt idtr;

return idtr.BaseAddress;

}

Very compact and not too hard to understand, I think. We de�ne a structure which resembles
the IDTR structure and ask via the assembly instruction SIDT to store the contents of the IDTR
into our structure and then return the address part of it to our caller.

Joanna Rutkowska was using a slightly di�erent approach, stu�ng everything together into one
function and trying to avoid assembly code parts for �portability�. Her code looks like this:

int swallow_redpill ()

{

unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";

((unsigned)&rpill[3]) = (unsigned)m;

((void(*)())&rpill)();

return (m[5]>0xd0) ? 1 : 0;

}

Now, her code does already a little bit more which could be described by the following function
that calls GetIdtBaseAddress():

1... or core for that matter.

c© 2006-2007 Oliver Schneider 2 Research paper (Rev. 2)
Can be freely distributed in its unmodi�ed form

http://search.msdn.microsoft.com/search/default.aspx?siteId=0&tab=0&query=SetProcessAffinityMask
http://assarbad.net

1.1. Why does setting the a�nity work? Chapter 1. Background on SIDT

int swallow_redpill ()

{

return (GetIdtBaseAddress() > 0xD0000000);

}

So if the IDT base address is at a higher position than 0xD0000000, she concludes to be inside
a virtual machine. This conclusion is wrong, even if we would assume for a moment that her
claim about the relocated GDTR/IDTR - see the foreword - are right. But despite that, the
problem would already arise on multi-processor machines where a test run could give reasonably
high addresses for one processor and �normal� ones for the other. Since the redpill.c does not
take this into account the result is per-se unreliable. I have also seen some papers that attempted
to call the instruction a number of times under the assumption that the result would show an even
distribution between the processors. In my opinion this is also not quite the best approach, given
that one can easily set the a�nity of the process without special privilege requirements.

1.1 Why does setting the a�nity work?

Setting the a�nity works for the current process and all its threads. Now why would a driver stick
to this setting anyway? For two reasons:

• I have not introduced any code into the driver which would change this setting.

• This driver sits most likely on top of a driver stack - except someone attached a �lter driver
to it2. Also since we use DeviceIoControl() to talk to the driver we can be certain that
the thread context remains the same.
One misconception of many people is, that a driver is something like a �program� in user
mode. Not so, the driver is more like a DLL and gets called by di�erent threads inside
di�erent processes.
DeviceIoControl() is a direct channel to the driver and therefore we can guarantee that
the thread context is stable even though we switch CPL3.

2Highly unlikely that someone attaches a �lter during the short time the driver is loaded. It gets immediately
unloaded after it has done its job.

3Meaning we are switching to CPL0, or ring 0 as it is sometimes called: in short, kernel mode.

c© 2006-2007 Oliver Schneider 3 Research paper (Rev. 2)
Can be freely distributed in its unmodi�ed form

http://search.msdn.microsoft.com/search/default.aspx?siteId=0&tab=0&query=DeviceIoControl
http://search.msdn.microsoft.com/search/default.aspx?siteId=0&tab=0&query=DeviceIoControl
http://assarbad.net

Chapter 2

Wrong assumptions, wrong

conclusions?

2.1 �VMM needs to relocate the guest's IDTR in a safe place�

If this was the case, one could easily prove it, right? Test it yourself by running multiple virtual
machines concurrently and read out the values of the IDT address using my tool SIDTcon1.

If the IDTR is relocated, why can both virtual machines2 in such a test have the same value
for the IDT address? But it gets better.

2.2 �Unfortunately, VMM cannot know if (and when) the
process running in guest OS executes SIDT instruction�

This quote implies that VMWare passes all non-privileged instructions on to the host and only
catches privileged ones because they cause a trap. This can be falsi�ed easily - but how?

2.3 Running SIDTcon, getting strange results ..

If you have run my program SIDTcon as I asked you to, you will likely have noticed strange values
and strange abbreviations. Here is a sample output from the machine3 where I am typing this
text.

SIDTcon - demonstration of SIDT discrepancies

(c) 2006-2007 by Oliver Schneider (assarbad.net)

Operating System Version 5.1.2600 (probably not in a VMM)

Multi-processor system recognized, will retrieve info per-processor!

Processor #00:

(UM)IDT base address: 8003F400 (2047)

1A detailed description of the tool follows.
2Given it is the same operating system inside the virtual machine.
3 ... which is not a virtual machine.

4

2.3. Running SIDTcon, getting strange results ..Chapter 2. Wrong assumptions, wrong conclusions?

(UM)GDT base address: 8003F000 (1023)

(KM)IDT base address: 8003F400 (2047)

(KM)GDT base address: 8003F000 (1023)

Processor #01:

(UM)IDT base address: F772A560 (2047)

(UM)GDT base address: F772A160 (1023)

(KM)IDT base address: F772A560 (2047)

(KM)GDT base address: F772A160 (1023)

From this output you can see the operating system version, the address of the IDT on both
processors and the address of the global descriptor table (GDT) on both processors. The values
look consistent. KM is used as the abbreviation for kernel mode and UM for user mode. The
numbers in brackets are the table limits of IDT and GDT respectively.

If you wonder what the �(probably not in a VMM)� is about, it just uses Joanna Rutkowska's
method to make a guess whether this is run inside a virtual machine (i.e. calling swallow_redpill()).
Nothing arcane ...
Let us run the same program in a virtual machine now:

SIDTcon - demonstration of SIDT discrepancies

(c) 2006-2007 by Oliver Schneider (assarbad.net)

Operating System Version 5.1.2600 (probably inside a VMM)

Single-processor system recognized.

(UM)IDT base address: FFC18000 (2047)

(UM)GDT base address: FFC07000 (16687)

(KM)IDT base address: 8003F400 (2047)

(KM)GDT base address: 8003F000 (1023)

As we can see the operating system versions are the same4 and the VMM only provides one
processor to the guest OS. But what is that? The values for the addresses di�er between user mode
and kernel mode?! Even worse (for Joanna), the values of the IDT address of the �rst processor
on the host is identical to that inside the virtual machine when read from kernel mode.

Now of course I hear the �rst people mumbling �Maybe the kernel mode result shows the host's
IDT address?!�. Nope. And why this is not the case can be easily seen from the following table:

4They are both XP, but the host is German and the guest English and while the host runs XP SP2, the guest
runs XP without SP. This does not a�ect the IDT default address, though.

c© 2006-2007 Oliver Schneider 5 Research paper (Rev. 2)
Can be freely distributed in its unmodi�ed form

http://assarbad.net

2.3. Running SIDTcon, getting strange results ..Chapter 2. Wrong assumptions, wrong conclusions?

VMM Windows IDT (KM) IDT (UM) GDT (KM) GDT (UM)
VMM tools installed - acceleration enabled

5.0.2195 80036400 FFC18000 80036000 FFC07000

VMWare 5.1.2600 8003F400 FFC18000 8003F000 FFC07000

5.2.3790 8003F400 FFC18000 8003F000 FFC07000

5.0.2195 80036400 80036000

Virtual PC 5.1.2600 8003F400 8003F000

5.2.3790 8003F400 8003F000

VMM tools installed - acceleration disabled

5.0.2195 80036400 80036000

VMWare 5.1.2600 8003F400 8003F000

5.2.3790 8003F400 8003F000

5.0.2195 BDF98500 BDF98D00

Virtual PC 5.1.2600 F9F98500 F9F98D00

5.2.3790 F8B98500 F8B98D00

VMM tools not installed - acceleration enabled

5.0.2195 80036400 FFC18000 80036000 FFC07000

VMWare 5.1.2600 8003F400 FFC18000 8003F000 FFC07000

5.2.3790 8003F400 FFC18000 8003F000 FFC07000

5.0.2195 80036400 80036000

Virtual PC 5.1.2600 8003F400 8003F000

5.2.3790 8003F400 8003F000

VMM tools not installed - acceleration disabled

5.0.2195 80036400 80036000

VMWare 5.1.2600 8003F400 8003F000

5.2.3790 8003F400 8003F000

5.0.2195 80036400 E8398500 80036000 E8398D00

Virtual PC 5.1.2600 8003F400 E5798500 8003F000 E5798D00

5.2.3790 8003F400 E8398500 8003F000 E8398D00

Several notes are necessary. The VMWare Workstation version used was 5.5.3 Build 34685, Virtual
PC 2007 was 6.0.156.0. All of the virtual machines have been tested one after another, so for this
test I did not run two of them simultaneously! For Virtual PC 2007 the hardware virtualization
features of the CPU on the host machine where used. The following table shows the respective
values for the host system:

CPU IDT (KM) IDT (UM) GDT (KM) GDT (UM)
Multi-processor system running Windows XP SP2 (5.1.2600)

#0 8003F400 8003F400 8003F000 8003F000

#1 F772A560 F772A560 F772A160 F772A160

It is obvious that the results between kernel mode and user mode are always consistent on the host
machine, but sometimes show a discrepancy when retrieved from inside the virtual machine. But
from this table one can also see another interesting fact. The address retrieved in kernel mode is
not identical to the one of the host system (e.g. for the Windows 2000 guest).

Moreover a pattern seems to exist. Whereever the hardware virtualization features were used,
the descriptor table address is the same as it would be on a physical machine. This is only valid
for Virtual PC 2007, though, since VMWare does not provide support for hardware virtualizations
in the 32bit version of their product and hence wasn't tested. For VMWare the native values were

c© 2006-2007 Oliver Schneider 6 Research paper (Rev. 2)
Can be freely distributed in its unmodi�ed form

http://assarbad.net

2.4. My conclusions Chapter 2. Wrong assumptions, wrong conclusions?

observed in all cases where the acceleration was turned o�. For Virtual PC 2007 the results where
particularly interesting with the �Virtual Machine Additions� installed and disabled hardware vir-
tualization. The results suggest that the �Virtual Machine Additions� have an in�uence on the
addresses for the descriptor tables used by the operating system.

Please �nd the old test results in appendix A!

2.4 My conclusions

The conclusions by Joanna Rutkowska seem to be wrong given my research. However, there
are some uncertainties here as well. First of all she had used an older version of VMWare and
implementation details relevant for this research may have changed over time. Another point is
that the research was mostly limited to VMWare and Virtual PC, which are only two out of the
three most popular type II VMM vendors: VMWare, Microsoft, Parallels. So Parallels should be
tested as well. What can be de�nitely stated, though, is that Redpill is far from reliable which
can be attributed to di�erent facts:

• It does not take into account multi-processor machines

• It works only in user mode for VMWare with enabled acceleration5

• The criteria need to be revised

2.5 Your help is needed

If you own an older version of VMware or a current one that has not been tested (e.g. with Linux
as host OS), please run my SIDTcon tool inside a guest Windows and send me the results along
with the version of VMWare, the host system version and the guest system version6. Also if you
have other type II VMMs running, don't hesitate to contact me via my website. Thank you.

5It appears that Joanna Rutkowska is well aware of this, since her System Virginity Veri�er (SVV) uses a kernel
mode driver to retrieve the IDT address.

6I cannot guarantee that SIDTcon will work on Windows NT4, but it is supposed to run on 32bit Windows Vista.

c© 2006-2007 Oliver Schneider 7 Research paper (Rev. 2)
Can be freely distributed in its unmodi�ed form

http://assarbad.net

Chapter 3

What SIDTcon does ...

SIDTcon is a very simple console based tool that relies on a simple legacy type NT driver to retrieve
the kernel mode results for SIDT. The idea of it is simple. Just call SIDT and - out of curiosity -
SGDT from kernel and from user mode, format the results and output them to the user.

The driver has been written in C++, because it provides stricter type checking. There is no
other reason. I do not use any classes or so. The project was created with my free project creation
wizard DDKWizard, which can be found on http://ddkwizard.assarbad.net.

3.1 Building SIDTcon and SIDTdrv

Download it �rst: http://assarbad.net/stuff/!export/SIDT.rar
To build both projects just open the Visual Studio 2005 solution and build it. Alternatively you
can compile the projects directly with the DDK BUILD command or via one of the DDKBUILD

scripts1 from OSR. The scripts as well as the manual to DDKWizard which describes con�guration
of DDKBUILD and DDKWizard can be found on the DDKWizard-website.

If you use the Visual Studio method you will still need the Windows XP, Windows 2003 or
Windows Vista DDK (or any variant of them). This is required along with one of the DDKBUILD

scripts to build both, the driver and the console program. Yes, the console program is actually a
DDK project! The source of the console application is heavily commented, so I will not discuss
this part.

I will just drop a few words about the driver source. Both projects share the �les in the
.\common folder. The .h �le has some declarations which are shared between user and kernel
mode and the .cpp �les contains two functions to fetch the addresses of the IDT and the GDT
respectively.

Main entry point to the driver is the DriverEntry function which creates a device object and
a symlink inside an object directory that is accessible from user mode. IRP_MJ_DEVICE_CONTROL

and the respective dispatch function SIDTDRV_DispatchDeviceControl are doing the main job.
SIDTDRV_DriverUnload's sole job is to ensure that the driver can be unloaded after it has done its
work. SIDTDRV_DispatchCreateClose is a dummy dispatch function that becomes only interesting
if the driver is being improved and handles more resources.

The dispatch routine which handles the IOCTLs from the user mode console application is as
simple as can be:

1Actually this project might require the .cmd version of the script. Not tested, though.

8

http://ddkwizard.assarbad.net
http://assarbad.net/stuff/!export/SIDT.rar

3.2. Running SIDTcon Chapter 3. What SIDTcon does ...

NTSTATUS SIDTDRV_DispatchDeviceControl(

IN PDEVICE_OBJECT DeviceObject,

IN PIRP Irp

)

{

PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation(Irp);

switch(irpSp->Parameters.DeviceIoControl.IoControlCode)

{

case IOCTL_GETBASEADDR:

if(sizeof(BASE_ADDRESSES) == irpSp->Parameters.DeviceIoControl.OutputBufferLength)

{

PBASE_ADDRESSES lpAddr = PBASE_ADDRESSES(Irp->AssociatedIrp.SystemBuffer);

lpAddr->IdtBaseAddress = GetIdtBaseAddress();

lpAddr->GdtBaseAddress = GetGdtBaseAddress();

lpAddr->uIdtLimit = GetIdtLimit();

lpAddr->uGdtLimit = GetGdtLimit();

Irp->IoStatus.Status = STATUS_SUCCESS;

Irp->IoStatus.Information = sizeof(BASE_ADDRESSES);

}

break;

default:

Irp->IoStatus.Status = STATUS_INVALID_DEVICE_REQUEST;

Irp->IoStatus.Information = 0;

break;

}

NTSTATUS status = Irp->IoStatus.Status;

IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

}

The most important part is the one, where the driver fetches the base addresses of the two
descriptor tables and puts them into the user bu�er:

PBASE_ADDRESSES lpAddr = PBASE_ADDRESSES(Irp->AssociatedIrp.SystemBuffer);

lpAddr->IdtBaseAddress = GetIdtBaseAddress();

lpAddr->GdtBaseAddress = GetGdtBaseAddress();

lpAddr->uIdtLimit = GetIdtLimit();

lpAddr->uGdtLimit = GetGdtLimit();

Not forgetting to set Irp->IoStatus.Information is self-explanatory and then the information
goes already up to user mode where SIDTcon takes care of displaying it.

3.2 Running SIDTcon

SIDTcon requires SIDTdrv.sys to reside in the same directory as itself. This directory must not be
a network share, since the driver is loaded from this location. Starting SIDTcon is straightforward.
You don't need any command line parameters. Just run it and watch the output.

c© 2006-2007 Oliver Schneider 9 Research paper (Rev. 2)
Can be freely distributed in its unmodi�ed form

http://assarbad.net

3.3. Troubleshooting Chapter 3. What SIDTcon does ...

3.3 Troubleshooting

If SIDTcon is run from a network share the loading of the driver will likely fail. The same may
hold for readonly drives (not tested).

3.4 License

The whole code is released into the public domain. This also means that I can not be held liable
for any damage resulting from the use of SIDTcon or its components.

This, however, means that you can freely use any of the components of the program and the
driver for any purpose including the use in commercial programs.

c© 2006-2007 Oliver Schneider 10 Research paper (Rev. 2)
Can be freely distributed in its unmodi�ed form

http://assarbad.net

Chapter 4

Appendix A

Following are the old test results from October 2006 when revision 1 of this paper was released:

VMM host guest IDT (KM) IDT (UM) GDT (KM) GDT (UM)
Uni-processor host system running Windows XP SP2

host (UP) 5.1.2600 � 8003F400 8003F400 8003F000 8003F000

VMW Wks 5 5.1.2600 5.0.2195 80036400 FFC18000 80036000 FFC07000

VMW Wks 5 5.1.2600 5.1.2600 8003F400 FFC18000 8003F000 FFC07000

VMW Wks 5 5.1.2600 5.2.3790 8003F400 FFC18000 8003F000 FFC07000

Multi-processor host system running Windows XP SP2

(CPU#0) 8003F400 8003F400 8003F000 8003F000
host (MP) 5.1.2600

(CPU#1) F7732560 F7732560 F7732160 F7732160

VMW Srv 1 5.1.2600 5.0.2195 80036400 FFC18000 80036000 FFC07000

VMW Srv 1 5.1.2600 5.1.2600 8003F400 FFC18000 8003F000 FFC07000

VMW Srv 1 5.1.2600 5.2.3790 8003F400 FFC18000 8003F000 FFC07000

Several notes are necessary. The VMWare Workstation version used was 5.5.1 Build 19175 and
VMWare Server was of version 1.0.1 Build 29996. All of the virtual machines have been tested
one after another, so for this test I did not run two of them simultaneously!

11

Contents

1 Background on SIDT 2

1.1 Why does setting the a�nity work? . 3

2 Wrong assumptions, wrong conclusions? 4

2.1 �VMM needs to relocate the guest's IDTR in a safe place� 4
2.2 �Unfortunately, VMM cannot know if (and when) the process running in guest OS

executes SIDT instruction� . 4
2.3 Running SIDTcon, getting strange results .. 4
2.4 My conclusions . 7
2.5 Your help is needed . 7

3 What SIDTcon does ... 8

3.1 Building SIDTcon and SIDTdrv . 8
3.2 Running SIDTcon . 9
3.3 Troubleshooting . 10
3.4 License . 10

4 Appendix A 11

12

	Front page
	Preface
	Background on SIDT
	Why does setting the affinity work?

	Wrong assumptions, wrong conclusions?
	``VMM needs to relocate the guest's IDTR in a safe place''
	``Unfortunately, VMM cannot know if (and when) the process running in guest OS executes SIDT instruction''
	Running SIDTcon, getting strange results ..
	My conclusions
	Your help is needed

	What SIDTcon does ...
	Building SIDTcon and SIDTdrv
	Running SIDTcon
	Troubleshooting
	License

	Appendix A
	Contents

